and S. G. Cohen, J. Am. Chem. Soc., 96, 2948 (1974); (d) R. O. Loutty and R. O. Loutty, Can. J. Chem., 50, 4052 (1972); (e) J.-P. Blanchi and A. R. Watkins, J. Chem. Soc., Chem. Commun., 265 (1974); (f) P. J. Wagner, A. E. Kamppainen, and T. Jellinek, J. Am. Chem. Soc., 94, 7512 (1972); (g) J. C. Dalton and J. J. Snyder, lbid., 97, 5192 (1975).
(15) The observed bimolecular rate constants for fluorescence quenching, $k_{b}{ }^{s}$, given in Table II can also be considered to be the product of $k_{\text {dift, }}$, the bimolecuiar rate constant for formation of an encounter complex, and $k_{r} /\left(k_{r}+k_{-d} d\right)$, the probablify thet formation of the encounter complex results in quenching ($\boldsymbol{k}_{\mathrm{r}}$) rather then diffusion apart to regenerate ${ }^{1} \mathrm{~A}$ and $\mathrm{B}(k$-amt $){ }^{146,9.18}$ We assume thet $k_{\text {diff }}$ and k-diff do not vary with aldehyde structure, since the related rate constants for amine quenching of alkanone fluorescence do not appear to vary with alkanone or amine structure. Under these conditions, variations in $k_{b}{ }^{3}$ reflect changes in k_{r}. See ref 14 g for a more detalled discussion.
(16) See, for example, T. R. Evans, J. Am. Chem. Soc., 93, 2081 (1971).
(17) The bimolecular yate constant for diffusion in hexane has been recently estimated to be $2.9 \times 10^{10} \mathrm{M}^{-1} \mathrm{sec}^{-1}: P$. J. Wagner and I. Kochevar, J. Am. Chem. Soc., 90,2232 (1968).
(18) For example, the reduction potentials for acetone and acetaldehyde are -2.3 and -2.1 V , respectively. ${ }^{14 \mathrm{~d}}$
(19) (a) D. Rehm and A. Weller, Isr. J. Chem., 8, 259 (1970); (b) H. Knlbbe, D. Rehm, and A. Weller, Ber. Bunsenges. Phys. Chem., 73, 839 (1969).
(20) Equation 4 calculates the ΔF values for formation of a charge-transfer complex in which there is full electron transfer from the donor (D) to the acceptor (A). The equation has, however, been usefully applied in cases where charge-transfer complexes are formed with onty partial electron transfer. ${ }^{14}$ In particuiar, although the slopes of plots of the log of the bimolecuiar rate constants for charge-transier quenching $\left(k_{q}\right)$ of excited states by electron donors vs. the calculated ΔF values vary with the extent of electron transier in the complex, the k_{q} values appear to level off when $\left.E\left(D \mid D^{+}\right)-(E A-A)+\Delta E_{0.0}\right)$ is less then $-5 \mathrm{kcal} / \mathrm{mol}$ lirespective of the extent of electron transfer. ${ }^{148,0,19}$
(21) It is difficult to determine the exact difference in alkanal and alkanone ${ }^{1} n, \pi^{*}$ state reduction potentials as defined in eq 4 ($\left.(\mathbf{I} A-\mid A)+\Delta E_{0,0}\right)$ because the excited singlet state energles, $\Delta E_{0,0}$, are not precisely known. The ground state reduction potentials for model compounds $(E A-A)$ for acetone $=-2.3 \mathrm{~V} ; E A-A)$ for acetaldehyde $=-2.1$ $V)^{14 d}$ indicate that If the $\Delta E_{0,0}$ values are comparable, the ${ }^{1} n, \pi^{*}$ state reduction potential will be around $5 \mathrm{kcal} / \mathrm{mol}$ greater for alkanals then alkanones. $\lambda_{\text {max }}$ for $S_{0} \rightarrow{ }^{1} n, \pi^{*}$ transitions is generally at somewhat longer wavelength for alkanals then alkanones (ref 12f, p 368-377) suggesting lower $\Delta E_{0,0}$ values for alkanals. On the other hand, we ob-
serve thet $\lambda_{\text {max }}$ for ${ }^{1} n, \pi^{*} \rightarrow S_{0}$ fluorescence transitions is generally at silightly shorter wavelengths for alkanals then alkanones, suggesting higher $\Delta E_{0,0}$ values for alkanals.
(22) $E\left(D\left(D^{+}\right)\right.$for TEA is $22.1 \mathrm{kcal} / \mathrm{mol},{ }^{14 \mathrm{~d}} \mathrm{E}\left(\mathrm{A}^{-} \mid \mathrm{A}\right)$ for acetone is -53.2 $\mathrm{kcal} / \mathrm{mol}^{14 \mathrm{~d}}$ and $\Delta E_{0,0}$ for the acetone ${ }^{1} n, \pi^{*}$ state is approximately 85 kcal/mol.
(23) The bimolecuiar rate constant for diffusion in acetonitrile has been estimated to be $2.7 \times 10^{10} \mathrm{M}^{-1} \mathrm{sec}^{-1}$ (S. L. Murov, "Handbook of Photochemistry", Marcel Dekker, New York, N.Y., 1973, p 55).
(24) The k_{g} value given for t-DCE quenching of acetone S_{1} states is obtained using a τ_{i} value of 1.7 nsec rather than the value of 2.0 nsec used in ref $5 \mathrm{5a}$.
(25) For example, the oxidation potentials of acetone and acetaldehyde are 2.59 and 3.03 V, respectively (R. O. Loutty and R. O. Loutfy, J. Phys. Chem., 77, 336 (1973)).
(26) (a) N. J. Turro, Pure Appl. Chem., 27, 679 (1971); (b) N. J. Turro, C Lee, N. Schore, J. Baritrop, and H. A. J. Cariess, J. Am. Chem. Soc., 93, 3079 (197 1); (c) M. P. Niemczyk, N. E. Schore, and N. J. Turro, Mol. Photochem., 5, 69 (1973).
(27) Reference 5a reports no quenching of blacetyl fluorescence in benzene with t-DCE concentrations greater then 0.1 M . Given a τ_{f} value of 10 nsec for biacetyl in benzene ${ }^{28}$ and assuming thet at most 10% quenching would go undetected ylelds $1 \times 10^{8} \mathrm{M}^{-1} \sec ^{-1}$ as a limiting value of $k_{\mathrm{b}}{ }^{8}$ for t-DCE quenching of blacetyl singlets.
(28) N. J. Turro and R. Engel, J. Am. Chem. Soc., 90, 2989 (1968).
(29) The $\Delta E_{0,0}$ values for the n, π^{*} states of biacetyl and acetone are 65^{30} and $85 \mathrm{kcal} / \mathrm{mol}$, respectively, while ED(D) D^{+}) $60 \mathrm{kcal} / \mathrm{mol}$ for acetone and $57 \mathrm{kcal} / \mathrm{mol}$ for biacetyl. ${ }^{3}$
(30) S. P. McGlynn, T. Azumi, and M. Kinoshita, "Molecuiar Spectroscopy of the Triplet State", Prentice-Hall, Englewood Cliffs, N.J., 1969, p 84.
(31) Calcuiated from the biacetyl ionization potential (IP $=9.57 \mathrm{~V})^{32}$ using the following formuia: $E\left(D D^{+} ;=0.891 P-6.04 .^{33}\right.$
(32) J. Kelder, H. Cerfontain, B. R. Higginson, and D. R. Lloyd, Tetrahedron Lett., 739 (1974).
(33) L. L. Miller, G. D. Nordblom, and E. A. Mayed, J. Org. Chem., 37, 916 (1972).
(34) The difference in alkanal and alkanone exclted singlet state energles, athough not precisely known, ${ }^{21}$ is surely less than the $10 \mathrm{kcal} /$ mol difference in alkanal and alkanone oxidation potentlals. ${ }^{25}$
(35) For a discussion of single photon counting techniques, see J. B. Birks and J. H. Munro, Prog. React. Kinet., 4, 215 (1967).
(36) L. Hundley, T. Coburn, E. Garwin, and L. Stryer, Rev. Sci. Instrum., 38, 488 (1967).

Electronic Structure of Dicarbonyls. Glyoxal Excited States ${ }^{1}$

Clifford E. Dykstra ${ }^{2}$ and Henry F. Schaefer III*
Contribution from the Department of Chemistry and Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720. Received May 8, 1975

Abstract

Excited electronic states of glyoxal, $\left(\mathrm{CHO}_{2}\right.$, have been studied by ab initio self-consistent field (SCF) methods using a double ζ basis set of contracted Gaussian functions. The vertical excitation energies from the optimum ground state geometry were determined for 20 trans and 20 cis excited states. These included all singlet and triplet $n \rightarrow \pi^{*}$ and $\pi \rightarrow \pi^{*}$ excitations and the lowest $n \rightarrow \sigma^{*}$ excitations. Geometry optimization was performed for the three lowest cis and trans states. Two very low-lying unobserved triplet states, trans ${ }^{3} \mathbf{B}_{\mathrm{u}}$ and cis ${ }^{3} \mathrm{~B}_{2}$, are predicted by these calculations to be within about $15000 \mathrm{~cm}^{-1}$ of the corresponding ground states, making them possibly the lowest excited states of glyoxal. The next lowest lying states were the observed trans ${ }^{3} A_{u},{ }^{1} A_{u}$ and cis ${ }^{1} B_{1}$, for which the geometry optimization provides a basis for comparison with experiment. The experimentally observed states arise from an $n \rightarrow \pi^{*}$ excitation, but surprisingly the lowest triplets arise from $\pi \rightarrow \pi^{*}$ excitations. The geometry of these $\pi \rightarrow \pi^{*}$ triplets is strikingly different from that of the ground state and is in closer correspondence with a biradical structure.

While many excited states of carbon monoxide, formaldehyde, and other carbonyl molecules have been identified, ${ }^{32}$ fewer states of the simplest dicarbonyl, glyoxal, have been observed. Brand identified the first excited states of trans-glyoxal as ${ }^{1} \mathrm{~A}_{\mathrm{u}}$ and ${ }^{3} \mathrm{~A}_{\mathrm{u}}$ from his vibrational analysis of the $4550-\AA$ absorption band. ${ }^{3 \mathrm{~b}}$ Following the description of McMurry, ${ }^{3 \mathrm{c}}$ these states were associated with an $\mathrm{n}\left(\mathrm{a}_{\mathrm{g}}\right)$ $\rightarrow \pi^{*}\left(\mathrm{a}_{\mathrm{u}}\right)$ excitation. Extensive high-resolution spectroscopic studies have been made by Ramsay and coworkers. ${ }^{4-6}$ In addition, they made the first observation of the cis form of glyoxal and identified the ${ }^{1} \mathrm{~B}_{1}$ excited state in rotational
analysis of a band at $4875 \AA^{7-9}$ This state is associated with an $n\left(a_{1}\right) \rightarrow \pi^{*}\left(b_{1}\right)$ excitation and a ${ }^{3} B_{1}$ state is presumed to occur in the same region. There has been no direct observation of other glyoxal excited states, though a simple molecular orbital picture suggests a total of $32 n \rightarrow \pi^{*}$ and $\pi \rightarrow \pi^{*}$ states.

In addition to their spectroscopic interest, the excited states of glyoxal are important photochemically. Glyoxal has been found to photodissociate into hydrogen, carbon monoxide, formaldehyde, and CHO radicals. ${ }^{10-14}$ And the dissociation product yields have been related to individual

Figure 1. Qualitative representation of glyoxal π and π^{*} molecular orbitals. Shading represents the phase difference between lobes.
electronic states. ${ }^{14-16}$ The reactive chemistry of carbonyl molecules also depends on the nature of the excited states. For instance, Yardley has proposed the existence of either a biradical intermediate or a charge-transfer complex between ${ }^{3} \mathrm{~A}_{\mathrm{u}}$ trans-glyoxal and olefins. ${ }^{17}$

Finding additional excited states by direct absorption spectroscopy appears limited because transitions from the ground state to some of the possible low-lying states are dipole forbidden. Specifically, these are the A_{g} and B_{g} states of trans-glyoxal and the A_{2} states of cis-glyoxal. Also, higher energy states may be more difficult to identify because of the observed increasing diffuseness in the spectrum at shorter wavelengths. ${ }^{3 a}$ Recently, a ${ }^{1} \mathrm{~B}_{\mathrm{g}}$ state of glyoxal has been tentatively identified at about $30000 \mathrm{~cm}^{-1}$ above the ground state, with the forbidden transition presumably induced by interaction with the solvent in a matrix. ${ }^{18}$ In biacetyl, $\mathrm{CH}_{3} \mathrm{COCOCH}_{3}$, the observed change from small molecule to statistical or large molecule behavior in radiationless relaxation has been attributed to a ${ }^{3} \mathrm{~B}_{\mathrm{g}}$ state occurring energetically near the ${ }^{3} \mathrm{~A}_{\mathrm{u}}$ state. ${ }^{19}$ This may support the possibility of a low-lying singlet-triplet pair of B_{g} states in glyoxal.

With only three excited states of glyoxal clearly identified and potential difficulties in extending experimental excited state information, theoretical considerations are appropriate. Theoretical methods may be useful in predicting the ordering of excited states and in providing some basis to support indirect experimental state identifications. And, in fact, several semiempirical studies have considered glyoxal and dicarbonyl excited states. ${ }^{20-24}$ Both Hug and coworkers 20 and McGlynn and coworkers, ${ }^{21}$ using CNDO calculations, indicate that of the $n \rightarrow \pi^{*}$ excitations, the lowest two should be $\mathrm{a}_{\mathrm{g}} \rightarrow \mathrm{a}_{\mathrm{u}}$ for trans and $\mathrm{a}_{1} \rightarrow \mathrm{~b}_{2}$ for cis followed by $a_{g} \rightarrow b_{g}$ and $a_{1} \rightarrow a_{2}$. For both cis and trans, the separations between the two excitations were found to be about 1 eV in both calculations. In the more conventional notation used here, b_{2} and b_{1} representations are necessarily interchanged compared with the usage of Hug and McGlynn. This gives a B_{1} state for their $a_{1} \rightarrow b_{2}$ (now $a_{1} \rightarrow$ b_{1}) excitation, as observed.

Unfortunately, only Kato and coworkers considered $\pi \rightarrow$ π^{*} states in addition to $n \rightarrow \pi^{*}$ states. ${ }^{24}$ Their results are in agreement with the ordering of $\mathrm{n} \rightarrow \pi^{*}$ excitations, but in addition, they show a $\pi \rightarrow \pi^{*}{ }^{3} \mathrm{~B}_{\mathrm{u}}$ state occurring between

Table I. trans-Glyoxal Excited States ${ }^{a}$

Excitation	$\begin{gathered} \text { Open } \\ \text { shell MO's } \end{gathered}$	$\begin{gathered} \text { State } \\ \text { symmetry } \end{gathered}$	Triplet energy	Singlet energy
Ground state		${ }^{1} \mathrm{~A}$ g		-226.5182
$\mathrm{n} \rightarrow \pi^{*}$	$7 \mathrm{ag} 2 \mathrm{a}_{u}$	$1-\mathrm{A}_{\mathrm{u}}$	-226.3940	-226.3741
$\pi \rightarrow \pi^{*}$	$1 b_{g}{ }^{2} \mathrm{a}_{u}$	$1-\mathrm{Bu}$	-226.3680	-226.1762
$\mathrm{n} \rightarrow \pi^{*}$	$6 b_{u} 2 \mathrm{a}_{u}$	$1-\mathrm{Bg}$	-226.3231	-226.3074
$\pi \rightarrow \pi^{*}$	$1 \mathrm{a}_{\mathrm{u}} 2 \mathrm{a}_{\mathrm{u}}$	$1-\mathrm{Ag}_{\mathrm{g}}$	-226.2480	-226.2450
$\mathrm{n} \rightarrow \pi^{*}$	$7 \mathrm{ag} 2 \mathrm{~b}_{\mathrm{g}}$	$2-\mathrm{Bg}_{\mathrm{g}}$	-226.2224	-226.2114
$\pi \rightarrow \pi^{*}$	$1 \mathrm{~b}_{\mathrm{g}} 2 \mathrm{bbg}_{\mathrm{g}}$	$2-\mathrm{Ag}^{\text {g }}$	-226.1511	-226.1474
$\mathrm{n} \rightarrow \pi^{*}$	$6 \mathrm{~b}_{\mathrm{u}} 2 \mathrm{bbg}_{\mathrm{g}}$	$2-\mathrm{A}_{\mathrm{u}}$	-226.1495	-226.1385
$\mathrm{n} \rightarrow \sigma^{*}$	7 ag 7 bu	$2-\mathrm{Bu}^{\text {u }}$	-226.1082	-226.0904
$\pi \rightarrow \pi^{*}$	$1 \mathrm{a}_{\mathrm{u}} 2 \mathrm{~b}_{\mathrm{g}}$	$3-\mathrm{Bu}$	-226.0814	-225.9734
$\mathrm{n} \rightarrow \sigma^{*}$	7 ag 8 ag	$3-\mathrm{Ag}$	-226.0188	-226.0072

$a^{\text {Each excited occupancy produces a singlet and triplet state of }}$ the given symmetry type. Arbitrary numerical prefixes distinguish states of the same symmetry. Energies correspond to vertical excitation and are in atomic units.
${ }^{3} \mathrm{~A}_{u}$ and ${ }^{3} \mathrm{~B}_{\mathrm{g}} \mathrm{n} \rightarrow \pi^{*}$ states. Furthermore, the ordering of ground state n and π orbitals is somewhat unexpectedly close. Ab initio calculations on the ground state ${ }^{25-27}$ have been in reasonable agreement with this ordering of the valence molecular orbitals (MO's). And as already pointed out, ${ }^{27}$ this suggests $\pi \rightarrow \pi^{*}$ excitations could be among lowlying states. As yet, no ab initio calculations of glyoxal excited states have been reported.

Theoretical Approach

Used in the calculations was a double ζ basis set of Dun-ning-contracted Gaussian functions, ${ }^{28} \mathrm{C}(9 \mathrm{~s} 5 \mathrm{p} / 4 \mathrm{~s} 2 \mathrm{p}), \mathrm{O}(9 \mathrm{~s}$ $5 p / 4 s 2 p)$, and $H(4 s / 2 s)$. In calculations on the ground state of glyoxal, ${ }^{27}$ this basis set has compared favorably with those used in other ab initio calculations. ${ }^{25,26,29,30} \mathbf{A}$ detailed review of basis sets has been presented elsewhere. ${ }^{31}$

In the previous calculation on the ground state, ${ }^{27}$ the closed shell occupancies were confirmed to be

$$
\ldots 5 b_{u}^{2} 6 a_{g}^{2} 1 a_{u}^{2} 6 b_{u}^{2} 1 b_{g}^{2} 7 a_{g}{ }^{2}
$$

for the trans form ($C_{2 h}$ symmetry) and

$$
\ldots 6 a_{1}^{2} 5 b_{2}^{2} 1 b_{1}^{2} 6 b_{2}^{2} 1 a_{2}^{2} 7 a_{1}^{2}
$$

for the cis form ($C_{2 v}$ symmetry). The π out-of-plane orbitals transform as a_{u} and b_{g} for trans and a_{2} and b_{1} for cis. The n or oxygen nonbonding orbitals are the highest filled a_{g}, b_{u}, a_{1}, and b_{2} MO's. A pictorial representation of the π and π^{*} MO's is given in Figure 1. The orbitals are ordered by increasing number of nodes. While the representation may suggest a possible ordering of excited states, calculations were performed for all possible $\mathrm{n} \rightarrow \pi^{*}$ and $\pi \rightarrow \pi^{*}$ excitations because of the close spacing of n and π ground state MO's.

Excited state occupancies were made by promoting one electron from each n and π orbital to an unfilled orbital. As shown in Tables I and II, for both cis and trans forms, there are ten such occupancies, arising from all $n \rightarrow \pi^{*}$ and $\pi \rightarrow$ π^{*} and two $\mathrm{n} \rightarrow \sigma^{*}$ excitations. Each occupancy, of course, can produce a singlet and triplet state for a total of 40 states. Single configuration self-consistent-field (SCF) calculations were performed for these 40 states. Arbitrary numerical prefixes have been assigned to distinguish states of the same symmetry. Of course, only for the lowest state of each symmetry are the present calculations truly variational. The vertical excitation energy was calculated for all states. This is the energy of a given state at the geometry which is optimum for the cis or trans ground state. ${ }^{27}$ Excited state calculations were performed only for the planar forms of the molecule. For gauche forms, the symmetry is reduced to C_{2}, for which only A and B states are defined,

Table II. cis-Glyoxal Excited States ${ }^{a}$

Excitation	Open shell MO's	State symmetry	Triplet		Singlet	
			Energy	Dipole moment	Energy	Dipole moment
Ground state		${ }^{1} \mathrm{~A}_{1}$			-226.5088	4.79
$\mathrm{n} \rightarrow \pi^{*}$	$7 \mathrm{a}_{1} 2 \mathrm{~b}_{1}$	$1-\mathrm{B}_{1}$	-226.3899	4.76	-226.3705	4.80
$\pi \rightarrow \pi^{*}$	$1 \mathrm{a}_{2} 2 \mathrm{~b}_{1}$	$1-\mathrm{B}_{2}$	-226.3628	3.04	-226.1856	5.13
$\mathrm{n} \rightarrow \pi^{*}$	$7 \mathrm{a}_{1} 2 \mathrm{a}_{2}$	$1-\mathrm{A}_{2}$	-226.3314	4.12	-226.3164	4.32
$\pi \rightarrow \pi^{*}$	$1 b_{1} 2 b_{1}$	1-A A_{1}	-226.2468	4.52	-226.2430	4.53
$\mathrm{n} \rightarrow \pi^{*}$	$6 \mathrm{~b}_{2} 2 \mathrm{~b}_{1}$	$2-\mathrm{A}_{2}$	-226.2086	4.29	-226.1971	4.28
$\mathrm{n} \rightarrow \pi^{*}$	$6 b_{2} 2 a_{2}$	$2-\mathrm{B}_{1}$	-226.1474	3.64	-226.1365	3.67
$\pi \rightarrow \pi^{*}$	$1 \mathrm{a}_{2} 2 \mathrm{a}_{2}$	2-A ${ }_{1}$	-226.1420	2.92	-226.1382	2.91
$\mathrm{n} \rightarrow \sigma^{*}$	$7 \mathrm{a}_{1} 7 \mathrm{~b}_{2}$	$2-\mathrm{B}_{2}$	-226.0888	1.07	-226.0669	0.73
$\mathrm{n} \rightarrow \sigma^{*}$	$7 \mathrm{a}_{1} 8 \mathrm{a}_{1}$	3-A	-226.0812	3.08	-226.0699	2.86
$\pi \rightarrow \pi^{*}$	$1 b_{1} 2 a_{2}$	$3-\mathrm{B}_{2}$	-226.0705	3.78	-225.9613	4.75

a Vertical excitation energies are in atomic units, and dipole moments in debyes.
and there is no longer a unique correspondence between orbital occupancies and electronic states. Hence, the simplest reasonable $a b$ initio description of many of the analogous gauche electronic states of glyoxal would require configuration interaction.

With the interest of comparing SCF results with experiment, a partial geometry optimization was performed for the observed states. Comparison of these optimized results with experiment may enable one to precisely predict the energies of unobserved states. From ground state results, it was expected that carbon-hydrogen bond length and CCH angle optimization would not improve the energy as much as optimizing the carbon-carbon and carbon-oxygen bond lengths and perhaps the CCO angle. For ${ }^{3} \mathrm{~A}_{u},{ }^{1} \mathrm{~A}_{u},{ }^{3} \mathrm{~B}_{1}$, and ${ }^{1} \mathrm{~B}_{1}$, these last three structural parameters were quite nearly optimized by a simple parabolic fit of energy to parameter value, fitting one parameter at a time. The changes in energy for the CCO angle were small and so, only the $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ bond lengths were optimized in the two lowest unobserved states, ${ }^{3} B_{u}$ and ${ }^{3} B_{2}$.

Results and Discussion

The calculated energies of the forty excited states at geometries corresponding to the cis or trans ground state optimum strucutres are given in Tables I and II, and represented in Figure 2. The lowest vertical excited states are the observed $1-\mathrm{A}_{u}\left(\mathrm{n} \rightarrow \pi^{*}\right)$ and $1-\mathrm{B}_{1}\left(\mathrm{n} \rightarrow \pi^{*}\right)$ states, though their energies relative to the ground state are higher than experimentally determined. Next are the trans $1-{ }^{3} \mathrm{~B}_{\mathrm{u}}$ and cis $1-{ }^{3} \mathrm{~B}_{2}$ states, both $\pi \rightarrow \pi^{*}$ excitations, and then another set of $n \rightarrow \pi^{*}$ states, $1-B_{g}$ and $1-A_{2}$. Transitions to the ${ }^{1} B_{g}$ state from the trans ground state and to the ${ }^{1} A_{2}$ state from the cis ground state are dipole forbidden. The positions of states lying above around $60000 \mathrm{~cm}^{-1}$ should be treated skeptically since Rydberg states (not treated here) become important in that region. The $\mathrm{n} \rightarrow \sigma^{*}$ states were quite high in energy and need not be considered in discussions of the low-lying electronic states of glyoxal.

For all occupancies, the triplet state is lower in energy than the singlet and for most, the singlet and triplet are fairly close. The exceptions are the two $\mathrm{B}_{\mathrm{u}}\left(\pi \rightarrow \pi^{*}\right)$ trans excitations and the two $\mathrm{B}_{2}\left(\pi \rightarrow \pi^{*}\right)$ cis excitations. For these, the singlets were as much as $40000 \mathrm{~cm}^{-1}$ higher than the corresponding triplets. These large singlet-triplet separations may be in part an artifact of the chosen basis set, which did not include diffuse or Rydberg-type functions. For an increasing number of $\pi \rightarrow \pi^{*}$ singlet states, it is now becoming clear that a purely valence-like description of the electronic structure is inadequate. ${ }^{32-34}$ However, several test calculations using diffuse $p \pi$ functions lowered the total energies of these $\pi \rightarrow \pi^{*}$ singlet states by less than 0.01 hartree.

The geometry optimization gave rather minor changes

Figure 2. The excited states of glyoxal. Energies correspond to vertical excitation from the cis or trans ground state. Triplet states are shown with solid lines and singlet states with broken lines. Symmetry state designations are given for each singlet-triplet pair of states and correspond to excitations given in Tables I and II. Correlation lines between cis and trans states connect states which must correlate on the basis of symmetry, but do not represent any internal rotation potentials.
for the $n \rightarrow \pi^{*}$ states, but substantially lowered the ${ }^{3} B_{u}$ and ${ }^{3} \mathbf{B}_{2}$ states. The results are shown in Table III. The promotion of an electron to the lowest π^{*} MO, with a node between carbon and oxygen, produced a lengthening in the C -O separation for ${ }^{3} \mathrm{~A}_{u},{ }^{1} \mathrm{~A}_{u},{ }^{3} \mathrm{~B}_{1}$, and ${ }^{1} \mathrm{~B}_{1}$. Also, the car-bon-carbon distances were slightly shortened for these states. The CCO bond angle changed little for the trans singlet and triplet but did increase in the cis states. For ${ }^{3} B_{u}$ and ${ }^{3} \mathrm{~B}_{2}$, an electron is excited from a $\pi \mathrm{MO}$ with no nodes to the lowest $\pi^{*} \mathrm{MO}$. In the ground state, the filled $\pi \mathrm{MO}$ is energetically just above the second highest occupied n orbital (see ref 27). At vertical excitation, the ${ }^{3} \mathrm{~B}_{\mathrm{u}}$ and ${ }^{3} \mathrm{~B}_{2}$, as expected, lie above the ${ }^{3} \mathrm{~A}_{u}$ and ${ }^{3} \mathrm{~B}_{1}$, respectively. But at the equilibrium geometry for the ${ }^{3} B_{u}$ and ${ }^{3} B_{2}$ states, the car-bon-carbon bond length is contracted by about $0.15 \AA$ and the carbon-oxygen bond length is about $0.15 \AA$ longer than in the ground state. Their energies now become lower than any other excited state.

The calculated dipole moments of the cis states are given in Table IV. The dipole moment of the lowest $n \rightarrow \pi^{*} B_{1}$ singlet and triplet is about the same as the ground state. For

Table III. Optimized Excited States a

	State	$R_{\text {CC }}$	$R_{\text {CO }}$	$\angle \mathrm{CCO}$	Energy, au	$\underset{\substack{\text { Energy } \\ \text { relative } \\ \text { to } \mathrm{gs}, \mathrm{~cm}^{-1}}}{\text {. }}$
Trans	${ }^{1} \mathrm{Ag}_{\mathrm{g}} \mathrm{gs}$	1.508	1.215	121.1	-226.5182	0.0
	$1^{3}{ }^{3}{ }_{u}$	1.492	1.241	121.0	-226.3959	26850
	$1^{1} \mathrm{~A}_{\mathrm{u}}$	1.494	1.244	121.7	-226.3766	31090
	$1^{3} \mathrm{~B}_{\mathrm{u}}$	1.353	1.356	$121.1{ }^{\text {b }}$	-226.4504	14890
Cis	${ }^{1} \mathrm{~A}, \mathrm{gs}$	1.516	1.213	123.2	-226.5088	0.0
	$1^{3} \mathrm{~B}_{1}$	1.492	1.236	124.7	-226.3921	25620
	$1^{1} \mathrm{~B}_{1}$	1.494	1.241	125.1	-226.3733	29740
	$1{ }^{3} \mathrm{~B}_{2}$	1.350	1.356	123.2	-226.4480	13340

a The carbon-carbon bond length, carbon-oxygen bond length, and carbon-carbon-oxygen angle were optimized for the lowest excited states. Bond lengths are in \AA and angles are in degrees. b Not optimized; ground state (gs) value assumed.

Table IV. Mulliken Analysis of the $1 b_{1}$ and $2 b_{1}$ Orbitals of Glyoxal, for the ${ }^{3} \mathrm{~B}_{2}$ and ${ }^{1} \mathrm{~B}_{2}$ Excited Electronic State

Atom	${ }^{3} \mathrm{~B}_{2}$ state	${ }^{1} \mathrm{~B}_{2}$ state
$\quad 1 \mathrm{~b}_{1}$ Orbital		
O	0.39	1.79
C	1.61	0.26
	$2 \mathrm{~b}_{1}$ Orbital	
O	0.79	0.07
C	0.21	0.93
	Total b_{1} Orbital Populations	
O	1.18	
C	1.82	1.81
		1.19
O	Total Atomic Populations	
C	8.13	8.31
H	6.06	5.89
	0.81	0.80

most excitations, the singlet and triplet have nearly equal dipoles. The exceptions are the $1-B_{2}\left(\pi \rightarrow \pi^{*}\right)$ and $3-B_{2}$ (π $\rightarrow \pi^{*}$). Not surprisingly, these are the same excitations which gave the large singlet-triplet separations.

Prediction of States. Several factors must be considered when predicting electronic excitation energies T_{e} on the basis of SCF calculations. Aside from the quality of the chosen basis set, one must estimate effects of geometry optimization, correlation energy, and differences in vibrational zeropoint energies between states. The partial geometry optimization of the ${ }^{3} \mathrm{~A}_{u},{ }^{1} \mathrm{~A}_{u}$, and ${ }^{1} \mathrm{~B}_{1}$ states and the complete optimization of the cis and trans ground states ${ }^{27}$ can be used to estimate some of the unknown effects. The partially optimized singlet states are about $9000 \mathrm{~cm}^{-1}$ above experimental 0-0 excitation energies. The ${ }^{3} \mathrm{~A}_{u}$ state is also about 30% higher in energy than experimentally found. A more complete geometry optimization and possible differences in zeropoint energies could probably account for no more than $1000 \mathrm{~cm}^{-1}$ of the discrepancy.

The remaining errors are due either incompleteness of the basis set or correlation effects. In light of this, it is interesting to note a recent Hartree-Fock (i.e., large basis set) study of the $n \rightarrow \pi^{*}$ singlet and triplet states of formaldehyde. ${ }^{35}$ There Garrison et al. found the SCF excitation energies to lie $\sim 8000 \mathrm{~cm}^{-1}$ below experimental values. This would at first suggest that the glyoxal excitation energies are too high because of the basis set. To test this, vertical excitation energies were calculated for formaldehyde using the same basis set as with glyoxal. The geometry used was the experimentally determined ground state structure. ${ }^{3 a}$

The results of these calculations, shown in Table V, agree with the larger basis set study ${ }^{35}$ in finding the $\mathrm{n} \rightarrow \pi^{*}$ energies too low. This suggests that the excitation energy errors

Table V. Formaldehyde Electronic States a, b

Excitation	State	Energy, au	Excitation energy, cm^{-1}
Ground state	${ }^{1} \mathrm{~A}_{1}$	-113.8295	0.0
$\mathrm{n} \rightarrow \pi^{*}$	${ }^{3} \mathrm{~A}_{2}$	-113.7426	19100
$\pi \rightarrow \pi^{*}$	${ }^{1} \mathrm{~A}_{2}$	-113.7286	22100
	${ }^{3} \mathrm{~A}_{1}$	-113.6738	34200
$\sigma \rightarrow \pi^{*}$	${ }^{1} \mathrm{~A}_{1}$	-113.6674	35600
	${ }^{3} \mathrm{~B}_{1}$	-113.5737	56200
$\mathrm{n} \rightarrow \sigma^{*}$	${ }^{1} \mathrm{~B}_{1}$	-113.5401	63500
	${ }^{3} \mathrm{~B}_{2}$	-113.4909	74300
	${ }^{1} \mathrm{~B}_{2}$	-113.4732	78200

${ }^{a}$ Calculations were done with the same basis set as that used for glyoxal. Energies correspond to vertical excitation at the experimentally determined geometry ${ }^{3 a}$ of the ground state. b Note that the $\pi \rightarrow \pi^{*}{ }^{1} \mathrm{~A}_{1}$ state calculated does not correspond to physical reality, as it has a large Hamiltonian matrix element with the ${ }^{1} \mathrm{~A}_{1}$ ground state of formaldehyde. CI calculations place this state much higher. See, e.g., S. D. Peyerimhoff and R. G. Buenker, "Chemical Spectroscopy and Photochemistry in the Vacuum-Ultraviolet", Reidel, Dordrecht-Holland, 1975.
introduced by our double ζ basis may be quite small for gloyoxal. However, this in turn implies that the true Har-tree-Fock excitation energies in glyoxal are too high. whereas in formaldehyde the opposite is the case. This result cautions us against models in which glyoxal is thought of as a superposition of two formaldehyde molecules. Interestingly, an analogous model has been successfully used by Dunning, Hosteny, and Shavitt ${ }^{33}$ to discuss the electronic states of butadiene in terms of those of two ethylene units.

Our conclusion at the present time concerning correlation effects in glyoxal is that they are somewhat unpredictable and can result in errors as large as $9000 \mathrm{~cm}^{-1}$ in HartreeFock excitation energies. Should more experimental information become available, it would be possible to calibrate SCF results for related systems, e.g., acrolein, and thus make rather accurate semiempirical predictions.

We can now attempt to estimate the positions of the next set of $n \rightarrow \pi^{*}$ states. The four $1-B_{g}$ and $1-A_{2}$ states were calculated to have vertical excitation energies greater than $40000 \mathrm{~cm}^{-1}$. The π^{*} MO for these and the lower pairs of states is the same. Since the n orbitals are largely noninteracting, we expect the same geometry changes, correlation effects, and SCF error as with excitation from the other n orbital. Therefore, we estimate that the $1-{ }^{3} \mathrm{~B}_{\mathrm{g}}$ state occurs about 29000 to $35000 \mathrm{~cm}^{-1}$ above the ground state, with the $1-{ }^{3} \mathrm{~A}_{2}$ perhaps slightly lower. In correcting the singlet state energies, it is possible that the singlet-triplet separation should be larger than calculated. However, cis excitations which gave particularly large singlet-triplet separations had substantially different dipoles. We consider the reasons for this later, but at this point, we note the agreement in dipole moments of the $1-{ }^{3} \mathrm{~A}_{2}$ and $1-{ }^{1} \mathrm{~A}_{2}$ states. Then, the similarity of these states and the analogous trans states with the lower observed $n \rightarrow \pi^{*}$ states places the singlets above the triplets at an energy which can be taken as the experimental ${ }^{1} \mathrm{~A}_{u}-{ }^{3} \mathrm{~A}_{u}$ difference, roughly $3000 \mathrm{~cm}^{-1}$. This could support the recent experimental identification ${ }^{18}$ of a ${ }^{1} B_{g}$ state.

Perhaps the most careful estimate is required for the two low-lying $\pi \rightarrow \pi^{*}$ triplets. Once again, we expect that further geometry optimization would not significantly change the energies of the $1-{ }^{3} \mathrm{~B}_{\mathrm{u}}$ and $1-{ }^{3} \mathrm{~B}_{2}$ states. Lacking a configuration interaction calculation, correlation effects are difficult to estimate reliably as discussed earlier. But the surprisingly low energies of these $\pi \rightarrow \pi^{*}$ states suggests that their correlation energies may be less than that of the glyoxal ground state. Thus, the ${ }^{3} \mathrm{~B}_{\mathrm{u}}$ may lie between 12000 and $22000 \mathrm{~cm}^{-1}$ above the ground state, after estimating the
theoretical uncertainty. Similarly, the ${ }^{3} B_{2}$ state might be found between 11000 and $21000 \mathrm{~cm}^{-1}$ above the cis ground state. While 21000 and $22000 \mathrm{~cm}^{-1}$ represent upper limits to the calculation uncertainty, spectroscopic studies ${ }^{4-9}$ at energies as low as about $18000 \mathrm{~cm}^{-1}$ do not indicate the presence of these states. Thus, it seems possible that these will the lowest excited states of glyoxal.

However, as the referee has pointed out, the ${ }^{1} \mathrm{~A}_{\mathrm{g}} \rightarrow{ }^{3} \mathrm{~B}_{\mathrm{u}}$ transition should have a very low oscillator strength. Also the Franck-Condon factors will favor absorption at frequencies corresponding to vertical excitation. Thus, the maximum absorption for ${ }^{1} \mathrm{~A}_{\mathrm{g}} \rightarrow{ }^{3} \mathrm{~B}_{\mathrm{u}}$ may very well occur at higher energies than ${ }^{1} \mathrm{~A}_{\mathrm{g}} \rightarrow{ }^{1} \mathrm{~A}_{u}$, and thus be obscured. Also the weak transition strength will be spread over a great wavelength region if these calculations are correct. Thus the lack of an experimental observation of the ${ }^{3} \mathrm{~B}_{\mathrm{u}}$ state does not necessarily place this state relative to the ${ }^{1} \mathrm{~A}_{u}$ state.

In the vertical excitation energies, a very substantial break is found between the states so far considered and the higher states. Since even a sizable downward correction would not place these among the low-lying states, no attempt has.been made to predict the true energies of the higher states.

The ${ }^{1} \mathrm{~A}_{u}$ and ${ }^{1} \mathrm{~B}_{1}$ states demonstrate an internal consistency of the calculations. Spectroscopic results have placed the ${ }^{1} \mathrm{~B}_{1}$ about $335 \mathrm{~cm}^{-1}$ below the ${ }^{1} \mathrm{~A}_{u}$ state ${ }^{4-8}$ using the determined value ${ }^{8}$ for the ground state cis-trans separation of $1125 \mathrm{~cm}^{-1}$. If, instead, the calculated separation ${ }^{27}$ of about $2070 \mathrm{~cm}^{-1}$ is used, the ${ }^{1} \mathrm{~B}_{1}$ state will be $600 \mathrm{~cm}^{-1}$ above the ${ }^{1} \mathrm{~A}_{u}$. And this compares well with a difference of $715 \mathrm{~cm}^{-1}$ in the partially optimized, calculated ${ }^{1} \mathrm{~B}_{1}$ and ${ }^{1} \mathrm{~A}_{u}$ state energies.

Electronic Structure. The underlying interest in ab initio calculations on dicarbonyls is to attempt to relate the electronic structure and hopefully chemical properties of the whole system to the simpler electronic structure of a carbonyl group. And this should be useful in understanding the chemistry of large carbonyl systems. In ground state calculations, ${ }^{27}$ a comparison between carbon monoxide, $(\mathrm{CO})_{2}$, and glyoxal made possible a better interpretation of the ordering of n and π valence MO's. The excited states show an even more significant relationship.

Many excited states of carbon monoxide have been observed and studied experimentally. ${ }^{3 a, 36}$ In an ab initio configuration interaction study of carbon monoxide, O'Neil and Schaefer found a dominant configuration for 11 bound states including the observed states. ${ }^{37}$ Two occupancies were found to yield the eight experimentally observed states:

$$
\begin{align*}
& 1 \sigma^{2} 2 \sigma^{2} 3 \sigma^{2} 4 \sigma^{2} 5 \sigma^{2} 1 \pi^{3} 2 \pi \tag{1}\\
& 1 \sigma^{2} 2 \sigma^{2} 3 \sigma^{2} 4 \sigma^{2} 5 \sigma 1 \pi^{4} 2 \pi \tag{2}
\end{align*}
$$

The states arising from occupancy 1 have a fairly small sin-glet-triplet separation. ${ }^{36}$ But the $\tilde{a}^{3} \Pi$ state and $\tilde{A}{ }^{1} \Pi$ state, which arise from occupancy 2, differ in energy by about 2 eV . This is suggestive of the $1-\mathrm{B}_{\mathrm{u}}, 3-\mathrm{B}_{\mathrm{u}}, 1-\mathrm{B}_{2}$, and $3-\mathrm{B}_{2}$ excitations in glyoxal.

The probable existence of a carbon monoxide dimer has been shown in theoretical calculations. ${ }^{38-40}$ Potential curves have been obtained showing three bound states of $(\mathrm{CO})_{2}$ in a constrained linear ($D_{\infty h}$) arrangement, with the lowest state, ${ }^{3} \Sigma_{g}{ }^{-}$, being bound with respect to the lowest available dissociation limit. The occupancy which gives rise to these states is,

$$
\begin{align*}
1 \sigma_{\mathrm{g}}^{2} 2 \sigma_{\mathrm{g}}{ }^{2} 3 \sigma_{\mathrm{g}}{ }^{2} 4 \sigma_{\mathrm{g}}^{2} 5 \sigma_{\mathrm{g}}{ }^{2} 1 \sigma_{\mathrm{u}}{ }^{2} 2 \sigma_{\mathrm{u}}^{2} 3 \sigma_{\mathrm{u}}^{2} \\
4 \sigma \mathrm{u}^{2} 1 \pi_{\mathrm{g}}{ }^{4} 1 \pi_{\mathrm{u}}{ }^{2} 2 \pi_{\mathrm{u}}{ }^{2} \tag{3}
\end{align*}
$$

This occupancy, however, does not correlate (for collinear
geometries) with the ground state occupancies of two CO molecules. In fact, the interaction between ground state CO molecules is repulsive (except for the long-range attraction), both in a linear arrangement ${ }^{38}$ and nonlinear approaches. ${ }^{27}$ However, by going to pathways of sufficiently low symmetry, it appears ${ }^{40}$ that the ${ }^{1} \Delta_{\mathrm{g}}$ state of $(\mathrm{CO})_{2}$ can dissociate readily to two ground state CO molecules. The lowest dissociation limit accessible to the ${ }^{3} \Sigma_{g}{ }^{-}$state of $(\mathrm{CO})_{2}$ is $\tilde{\mathrm{X}}^{1} \Sigma^{+}$plus $\tilde{\mathrm{a}}^{3} \Pi$. Finally, occupancy 3 of the dimer correlates, though not uniquely, with the $1-B_{u}$ and $1-\mathrm{B}_{2}$ electron occupancies of glyoxal.

This three-way correlation of excited states and occupancies is also indicated by the structures of the $\mathrm{CO},(\mathrm{CO})_{2}$, and glyoxal states. Experimentally, the carbon monoxide bond length is about $0.1 \AA$ longer in the a ${ }^{3} \Pi$ state than in the ground state. Similarly, the $\mathrm{C}-\mathrm{O}$ bond length is about $0.14 \AA$ longer in the ${ }^{3} \mathrm{~B}_{\mathrm{u}}$ and ${ }^{3} \mathrm{~B}_{2}$ states of glyoxal than in the gound state. The minimum in the $\mathrm{C}-\mathrm{C}$ distance potential for CO dimer was found to be $1.335 \AA \AA^{38}$ For the analogous glyoxal states, we find the C-C distance to be 1.353 in the trans form and $1.350 \AA$ in the cis form.

Correlation of additional states is much more difficult, since occupancy 1 of carbon monoxide has two open-shell π MO's. Such a correlation will not be unambiguous and can give doubly excited glyoxal states. The most important result of the discussion of CO, CO dimer, and glyoxal states is the rationalization of the low-lying ${ }^{3} \mathrm{~B}_{\mathrm{u}}$ and ${ }^{3} \mathrm{~B}_{2}$ states. Specifically, an electronically excited CO monomer is required to form the ground state of $(\mathrm{CO})_{2}$ and in glyoxal, this state becomes a very low-lying $\pi \rightarrow \pi^{*}$ state.

Explanation of the anomalous singlet-triplet separation and dipole differences of the $1-\mathrm{B}_{\mathrm{u}}, 3-\mathrm{B}_{\mathrm{u}}, 1-\mathrm{B}_{2}$, and $3-\mathrm{B}_{2}$ excitation requires examination of the wave functions. Considering as an example the $1-r_{2}$ states, we note that only a few orbitals provide different singlet-triplet contributions to the total dipole moment. For these orbitals, atomic Mulliken populations show remarkable differences between the singlet and triplet. In particular, as seen in Table IV, the $1 b_{1}$ and $2 b_{1}$ orbitals essentially "switch" character in going from the ${ }^{3} B_{2}$ to the ${ }^{1} B_{2}$ state. Since the $1 b_{1}$ orbital is doubly occupied, while the $2 \mathrm{~b}_{1}$ orbital is singly occupied, this change in character strongly affects the total atomic populations, as well as the dipole moments. Note that the doubly occupied $1 \mathrm{~b}_{1}$ orbital is of $\mathrm{C}^{-} \mathrm{O}^{+}$character for the ${ }^{3} \mathrm{~B}_{2}$ state, but $\mathrm{C}^{+} \mathrm{O}^{-}$character for the ${ }^{1} \mathrm{~B}_{2}$ state. Immediately, this accounts for the larger dipole moment of the singlet. The halffilled $l a_{2}$ orbital is similar in both singlet and triplet. The large singlet-triplet separation is probably connected with the interchange in the nature of the $1 b_{1}$ and $2 b_{1}$ orbitals, but a CI description of the wave functions may be necessary to fully understand this connection. For the other $\pi \rightarrow \pi^{*}$ excitations, the arguments are analogous.

Of perhaps primary importance in this work is the nature of the predicted low-lying ${ }^{3} \mathrm{~B}_{\mathrm{u}}$ and ${ }^{3} \mathrm{~B}_{2}$ states. We first point out that the localization of the b_{1} MO's causes the states to be biradicals. This is consistent with the CO-dimer state, ${ }^{3} \Sigma^{-}$, which has been described as a biradical ${ }^{38}$ and which correlates with the glyoxal $\pi \rightarrow \pi^{*}$ triplets. It is worthwhile to note that the singlet states which arise from the same excitation are not biradicals because of the singlet-triplet $1 b_{1}-2 b_{1}$ MO reversal in localization. The carbon-carbon bond of the ${ }^{3} B_{u}$ and ${ }^{3} B_{2}$ states is essentially a double bond, consistent with the bond length shortening, and thus the structures can be represented as

${ }_{3}^{3} \mathbf{B}_{u}$

${ }^{3} \mathbf{B}_{2}$

Figure 3. Correlation of the lowest triplet states of glyoxal with those of two formaldehyde molecules.

As with ${ }^{3} \Sigma^{-}$CO dimer, the high reactivity of a biradical could make the observation of these states difficult.

As mentioned earlier, another model in terms of which to discuss the electronic spectrum of glyoxal involves the superposition of two $\mathrm{H}_{2} \mathrm{CO}$ molecules. This sort of "molecules in molecules" model has been successfully used to describe several excited electronic states of butadiene recently. ${ }^{33}$ In the same spirit we present in Figure 3 a correlation of the lowest triplet states of glyoxal with the $\mathrm{n} \rightarrow \pi^{*}$ and $\pi \rightarrow \pi^{*}$ states of formaldehyde. Note of course that this model applies only to geometries of glyoxal rather comparable to those of formaldehyde. And we see that at the ground state equilibrium geometry, the $n \rightarrow \pi^{*}$ state of glyoxal is indeed the lowest excited state, as is the case for formaldehyde. However, changes upon excited state geometry optimization are so severe as to bring into question the validity of this simple model. In addition, Figure 3 shows that at the vertical geometry the lowest $\pi \rightarrow \pi^{*}$ state falls below the second $n \rightarrow \pi^{*}$ state. Thus one can reasonably conclude that the "coupling" of the two fragments is rather strong in glyoxal.

The final consideration of this work is the correlation of cis and trans excited states. The complicated pattern of vertical excitations in Figure 2 has several interesting features. After placing the $1-{ }^{3} B_{u}$ and $1-{ }^{3} B_{2}$ states below the $1-A_{u}$ and $1-B_{1}$ states, respectively, it can be seen that the A_{u} trans states correlate with higher energy A_{2} cis states. Similarly B_{1} states correlate with higher B_{g} states. This would indicate that population of the unobserved A_{2} and B_{2} states could probably be followed by isomerization. If there is little or no barrier to the isomerization, then the existence of these states might explain short-wavelength diffuseness in the glyoxal spectrum. At still higher energies, $\mathrm{n} \rightarrow \pi^{*}, \pi \rightarrow$ π^{*}, and $n \rightarrow \sigma^{*}$ states are considerably mixed. There will be several avoided crossings and some $n \rightarrow \pi^{*}$ states of one
isomer will be found to correlate with $\pi \rightarrow \pi^{*}$ states of the other isomer.

Acknowledgment. The Datacraft $6024 / 4$ minicomputer is supported by the National Science Foundation under Grant GP-39317. We thank Professors Karl Freed, Edward Lee, C. Bradley Moore, and James Yardley for helpful comments. The support of the DuPont Corporation for one of us (C.E.D.) is appreciated.

References and Notes

(1) Work performed under the auspices of the U.S. Energy Research and Development Administration.
(2) Du Pont Graduate Fellow.
(3) (a) G. Herzberg, "Electronic Spectra of Polyatomic Molecules", Van Nostrand-Reinhold, New York, N.Y., 1966; 'Spectra of Diatomic Molecules", Van Nostrand-Reinhold, New York, N.Y., 1950, (b) J. C. D. Brand, Trans. Faraday Soc., 50, 431 (1954); (c) H. L. McMurry, J. Chem. Phys., 9, 241 (1941).
(4) J. Paldus and D. A. Ramsay, Can. J. Phys., 45, 1389 (1967).
(5) F. W. Birss, J. M. Brown, A. R. H. Cole, A. Lofthus, S. L. N. G. Krishnamachari, G. A. Osborne, J. Paldus, D. A. Ramsay, and L. Watmann, Can. J. Phys. 48, 1230 (1970).
(6) D. M. Agar, E. J. Bari, F. W. Birss, P. Borrell, P. C. Chen, G. N. Currie, A. J. McHugh, B. J. Orr, D. A. Ramsay, and J.-Y. Roncin, Can. J. Phys., 49, 323 (1971).
(7) W. Holzer and D. A. Ramsay, Can. J. Phys., 48, 1759 (1970).
(8) G. N. Currie and D. A. Ramsay, Can. J. Phys., 49, 317 (1971).
(9) D. A. Ramsay and C. Zauli, Acta Phys. Acad. Sci. Hung., 35, 79 (1974).
(10) F. H. Dorman and A. S. Buchanan, Aust. J. Chem., 9, 49 (1956).
(11) F. E. Blacet and R. W. Moulton, J. Ams. Chem. Soc., 63,868 (1941)
(12) R. G. W. Norrish and J. G. A. Griffiths, J. Chem. Soc., 2829 (1928).
(13) J. G. Calvert and J. N. Pitts, Jr., 'Photochemistry", Wlley, New York, N.Y., 1966, p 376.
(14) C. S. Parmenter, J. Chem. Phys., 41, 658 (1964).
(15) J. T. Yardley, J. Chem. Phys., 56, 6192 (1972).
(16) L. G. Anderson, C. S. Parmenter, and H. M. Poland, Chem. Phys., 1, 401 (1973).
(17) J. T. Yardley, J. Am. Chem. Soc., 94, 7283 (1972).
(18) J. Kelder, H. Cerfontain, J. K. Eweg, and R. P. H. Rettschnick, Chem. Phys. Lett., 26, 491 (1974).
(19) E. Drent, R. P. van der Werf, and J. Kommandeur, J. Chem. Phys., 59, 2061 (1973).
(20) W. Hug, J. Kuhn, K. J. Selbold, H. Labhart, and G. Wagniere, Helv, Chim. Acta, 54, 1451 (1971).
(21) J. F. Arnett, G. Newkome, W. L. Mattice, and S. P. McGynn, J. Am. Chem. Soc., 96, 4385 (1974).
(22) J. R. Swenson and R. Hoffmann, Helv. Chim. Acta, 53, 2331 (1970).
(23) E. Drent and J. Kommandeur, Chem. Phys. Lett., 14, 321 (1972).
(24) H. Kato, H. Konishi, H. Yamabe, and T. Yonezawa, Bull. Chem. Soc. Jpn., 40, 2761 (1967).
(25) U. Pincelli, B. Cadioli, and D. J. David, J. Mol. Struct. 9, 173 (1971).
(26) T.-K. Ha, J. Mol. Struct., 12, 171 (1972).
(27) C. E. Dykstra and H. F. Schaefer, J. Am. Chem, Soc., in press.
(28) T. H. Dunning, J. Chem. Phys., 53, 2823 (1970).
(29) L. Radom, W. A. Lathan, W. J. Hehre, and J. A. Pople, Aust. J. Chem., 25, 1601 (1972).
(30) K. R. Sundberg and L. M. Cheung, Chem. Phys. Lett., 29, 93 (1974).
(31) H. F. Schaefer, "The Electronic Structure of Atoms and Molecules: A Survey of Rigorous Quantum Mechanical Results', Addison-Wesley, Reading, Mass., 1972.
(32) C. F. Bender, T. H. Dunning, H. F. Schaefer, W. A. Goddard, and W. J. Hunt, Chem. Phys. Lett., 15, 171 (1972).
(33) T. H. Dunning, R. P. Hosteny, and I. Shavitt, J. Am. Chem. Soc., 95, 5067 (1973).
(34) P. J. Hay and I. Shavitt, J. Chem. Phys., 60, 2865 (1974).
(35) B. J. Garrison, H. F. Schaefer, and W. A. Lester, J. Chem. Phys., 61, 3039 (1974).
(36) P. H. Krupenie, Natl. Stand. Ref. Data Ser., Natl. Bur. Stand., No. 5 (1966).
(37) S. V. O'Nell and H. F. Schaefer, J. Chem. Phys., 53, 3394 (1970).
(38) N. H. F. Beebe and J. R. Sabin, Chem. Phys. Lett., 24, 389 (1974).
(39) J. Flelshhauer, M. Beckers, and H. D. Scharf, Tetrahedron Lett., 43, 4275 (1973).
(40) R. C. Haddon, D. Poppinger, and L. Radom, J. Am. Chem. Soc., 97, 1645 (1975).

